Handling and Use of Sulfur Dioxide for Magnesium Melt Protection

SF₆ and the Environment: Emission Reduction Strategies November 2-3, 2000

Without Proper Protection, Molten Magnesium Will Evaporate and Burn

- Due to its high vapor pressure, magnesium will evaporate from an unprotected molten magnesium surface
- In an atmosphere of air/oxygen, magnesium vapor will react or burn, forming oxides
- This reaction will generate heat and thereby increase the evaporation, thus accelerating the burning

History of Magnesium Melt Protection

- ✓ A US patent from 1934 cited several gases, including SF₆, BF₃, and SO₂
- ✓ A combination of salt-based fluxes and SO₂ was commonly used until the introduction of SF₀
- ✓ R&D in the late 60's and 70's formed the basis for using SF₆ as melt protection in magnesium melting and casting
- ✓ During the late 70's and 80's most producers and die casters adopted SF₆ in production
- ✓ SF₆ was considered a major improvement for the working environment in the magnesium industry, since SO₂ is both toxic and corrosive

Using 502 for Welt Protection

- Proven and reliable technology
 - More than 50 years experience in Europe
 - Recent experience in North America and Japan
 - Concentration and flow parameters established
 - Compatible mixing and furnace equipment available

Using SO2 for Melt Protection

- Proven and reliable technology
 - More than 50 years experience in Europe
 - Recent experience in North America and Japan
 - Concentration and flow parameters established
 - Compatible mixing and furnace equipment available
- No global warming
 - Establishes superiority for magnesium in Life Cycle Analysis

502 Creates a Life Cycle Advantage for Magnesium Components

Life Cycle Study of Cross Car Beams

Reference: Opel/Hydro

Magnesium

Using SO2 for Melt Protection

- Proven and reliable technology
 - ► More than 50 years experience in Europe
 - Recent experience in North America and Japan
 - Concentration and flow parameters established
 - Compatible mixing and furnace equipment available
- No global warming
 - Establishes superiority for magnesium in Life Cycle Analysis
- Cost-effective solution

Using 502 for Welt Protection

- Proven and reliable technology
 - ► More than 50 years experience in Europe
 - Recent experience in North America and Japan
 - Concentration and flow parameters established
 - Compatible mixing and furnace equipment available
- No global warming
 - Establishes superiority for magnesium in Life Cycle Analysis
- Cost-effective solution
- Disadvantages
 - ► Toxic (2 ppm occupational exposure limit in 8 hr)
 - Potential acidic precipitation (H₂SO₄)

Casting of Ingots Requires Melt Surface Protection

Hydro Magnesium Systematically Reduced SF_s Usage in Ingot Casting Lines

CO₂-eq. [kg/kg Mg]

- **✓** Implementation of SO₂
 - "Tightening" furnaces and casting equipment to minimize the use of sulfur dioxide

✓ Implementation of SO₂

- ► "Tightening" furnaces and casting equipment to minimize the use of sulfur dioxide
- Developing established procedures for safe gas management

✓ Implementation of SO₂

- "Tightening" furnaces and casting equipment to minimize the use of sulfur dioxide
- Developing established procedures for safe gas management
- ► Verifying that sulfur dioxide can be used for effective melt protection while still achieving an acceptable and safe working environment

Magnesium Diecasting Requires Protection of the Melt Surface

Hydro Wagnesium Approach for Diecasting

- ✓ Encourage diecasters to consider SO₂
 - Developed a gas mixing unit for air-sulfur dioxide

Gas Mixing Unit

Manifold for Gas Distribution

Design Data for Gas Distribution

- ✓ Distance between metal level and lid/gas manifold
 - ► 100-150 mm
- ✓ Size of gas supply and distribution manifold
 - ► 1.0-1.5 cm² (internal diameter of 12-15 mm)
- ✓ Total outlet area
 - > 0.15-0.30 cm² (20-40 outlets of 1 mm diameter)
- Recommended gas flow
 - Approximately 10 NI/min (gas outlet velocity of 5-10 m/s)

Hydro Magnesium Approach for Diecasting

- ✓ Encourage diecasters to consider SO₂
 - Developed a gas mixing unit for air-sulfur dioxide
- Continuing education papers/presentations
 - ► Use of SF₆ in the Magnesium Industry An Environmental Challenge (1996)
 - Protection of Molten Magnesium from Oxidation (1996)
 - ► Gas Protection of Molten Magnesium Alloys; SO₂ as a Replacement for SF₀ (1996)
 - Diecaster Bulletin (1997)
 - ► Progress to Eliminate SF₆ as a Protective Gas in Magnesium Die Casting (1998)
 - ► Use of SO₂ as Protection Gas in Magnesium Diecasting (2000)

Cost Impact SF, vs. SO₂

			SF ₆	SO ₂
Number of machines		3		
Running operation	[days / year]	300		
Running operation	[hours / day]	24		
Flow rate of gas to each machine	[NI / min]		10	10
Concentration of gas	[%]		0.4	0.7
Price	[NOK / kg]		270	33
Volume / weight	[NI / kg]		153	350
Consumption of gas	[kg / year]		339	259
Cost / year	[NOK]		91500	8500

Environmental Impact

(*component weight/shot weight)

Local Impact - Health & Safety

- **✓** Sulfur dioxide is toxic
 - Occupational exposure limit of 2 ppm
 - Odor detectable at 0.1-0.3 ppm
 - ► Safe practice record established

Local Impact - Health & Safety

- ✓ Sulfur dioxide is toxic
 - Occupational exposure limit of 2 ppm
 - ► Odor detectable at 0.1-0.3 ppm
 - Safe practice record established
- ✓ Sulfur dioxide contributes to acid rain
 - ► Use determined by local agencies
 - Related to annual consumption (50-500 kg/yr)
 - **▶** Dependent on operating environment

